Rapid Seismic Response System X. Goula (1), B. Colas (2), J.A. Jara (3), N. Romeu (3), P. Dominique (4), T. Susagna (1), J. Irizarry (1), C. Olivera (1), S. Figueras (1) and A. Roca (1) - (1) Institut Geològic de Catalunya, Barcelona, Spain; xgoula@igc.cat - (2) Bureau de Recherches Géologiques et Minières, Montpellier, Franc (3) GEOCAT, Barcelona, Spain - (4) Bureau de Recherches Géologiques et Minières, Orleans, France #### **Abstract** The existing seismic information systems at the present time in Europe are limited in the amount of provided useful information. With the purpose of improving this situation a demonstrative Regional Automatic Seismic Damage Information system (ISARD project) has been developed on the Eastern Pyrenees (some Provinces in Spain, a French Department and Andorra). A real time system based on a VSAT seismic Broad Band network has been developed first in Catalonia and is now operational in an extended region, with 3 new accelerometric stations in France, 1 in Andorra and a total of 19 stations for the seismic network. The system can generate automatically a few minutes after the earthquake an informative note with the estimation of the possible damages to building stock and affected population for Civil Defence crisis managers. The scenarios are defined following vulnerability assessment methodologies applied to the municipality scale using GIS techniques. This automatic seismic information system can contribute to enhance the management of the crisis and sharing of each country's first-aid organizations according to a cross-border coherent evaluation of damages. Key-words: Rapid Alert, Real Time Seismology, Damage Scenarii, Pyrenees. #### 1. Introduction Located on the border between Spain and France, the Pyrenees region is one of the most active seismic zones of the two countries. Its historical seismicity and recent tectonics data indicate an important level of seismic hazard. Earthquakes with magnitudes between 4.5 and 6.5 have caused damages in the past. Since some years ago, a real time system is functioning in Catalonia to send an SMS message informing of the localization and magnitude of the earthquake event. The system recently implemented in Eastern Pyrenees allows us to improve the real time system, with the possibility of fast diffusion to Civil Defence agencies of an informative note with the estimation of the possible damages at both sides of the Eastern Pyrenees border, within a few minutes after the earthquake. # 1.1. VSAT seismic network A real time system based on a VSAT seismic network has been developed first in Catalonia [Goula et al., 2001] and now is operational in an extended region, with 3 new accelerometric stations in France, 1 in Andorra and a total of 19 seismic stations for the seismic network. The stations are based on VSAT platforms sending continuous almost real time seismic data via satellite to the Hub at the processing centre of the Institute Geològic de Catalunya (IGC) in Barcelona (Spain) and from there to the Bureau de Recherches Géologiques et Minières (BRGM) at Orleans (France), using a securised Virtual Private Network. Data are continuously stored and processed with an automatic location system (DAS) at two Seismic Reception Data Centres in Barcelona (Spain) and Orleans (France). At the present time (January, 2009), 15 Broad-Band stations are operative, with STS-2 and Guralp CMG-3T sensors and 3 epi-sensor accelerometer together with the reception and processing centre (See Figure 1). One other Broad-Band station is under construction in Andorra. Figure 1: Map of situation of seismic stations of the Pyrenean VSAT Network ### 1.2. Real time automatic processing system (DAS) DAS has been created from Automatic Earthworm (EW) modules [USGS, 2005] adapted to give solutions to the main ISARD requirements and VSAT network conditions, i.e. real time processing of waveforms coming from the acquisition software of Nanometrics (NAQS); taking into account functionalities of trigger detection; their coherent association; hypocenter location and database archiving [Romeu et al., 2006]. A simplified diagram of its architecture is shown in Figure 2. Figure 2. Simplified diagram of the Automatic Earthworm modules installed at Barcelona data centre # 1.3. Generation of automatic damage scenarios (TELEAVÍS) TELEAVÍS is an application designed for the automatic generation of reports from the hypocentre data of the earthquakes detected by DAS and for its transmission by fax, SMS, ftp and electronic mail. From the data received from DAS, TELEAVÍS develops an epicentral location map with planimetry of 1:250000 and other maps with the results of the damage scenario automatic computation and with the PGA and PGV computed from records of seismic stations. Damage scenarios have been computed (ESCENARIS soft) using methodologies proposed by Susagna et al. (2006), Roca et al. (2006) and those defined in the ISARD project (Irizarry et al., 2007). Two different methods are used to compute automatic damage scenario, in function of data availability: - -Level 0 method is based on the following hypothesis: - a. the unit of work is the total area of the municipality - b. soil conditions are not considered - c. EMS'98 scale is used to define vulnerability classes, and Damage Probability Matrices. - -Level 1 method: - a. the units of work are differentiated polygons in each municipality, - b. soil effects are considered, - c. typologies are defined by structural and constructive criteria and vulnerability indexes and functions are used for each typology following RISK-UE methodology [Mouroux and Lebrun, 2006]. The application of these methods relays in the development of statistical distributions for both the vulnerability classes and the representative structural typologies of the studied regions. The distributions developed within the project are characteristic of the pilot zones considered. In order to apply these methodologies to other sites new statistical distributions should be developed. These methodologies had been included in an exercise to assess the applicability of different software packages to earthquake loss estimation in the context of rapid post-earthquake response in European urban centres (NERIES project) (Strasser, et al. 2008). #### 1.3.1. Level 0 Cross-Border automatic scenario The Level 0 automatic scenario has been applied to the municipalities of Catalonia, two municipalities of Andorra and the Département des Pyrénées Orientales of France. The classification of the dwelling buildings of the study region, according to the defined classes of vulnerability in the EMS-98, has been elaborated from data from the buildings census made in 1990 by the Institute of Statistics of Catalonia (IEC) and by the BRGM from IGN/INSEE/field investigation for the French part. For Andorra, the data was extracted from the Municipal Urbanism and Organization plans (POUP) and has been complemented with aerial photos and field surveys. The available information is the age, the height and the geographic location of the buildings. The vulnerability assessment is based on the classification of the building stock of each municipality according to the EMS-98 [Grünthal, 1998] vulnerability classes using the methodology developed by Chávez (1998) and exposed by Roca et al. (2006). Chávez (1998) established the distribution of the vulnerability classes according to the age, height and location of the building stock. To obtain the number of buildings in each vulnerability class, the age and height distribution must be known for both the urban and rural areas of the municipality. The vulnerability classes distribution was defined based on the expert judgment of architects who knew very well the construction history of the Catalonian region in Spain. The estimation of the damage has been made by means of probability damages matrices that have been determined for the classes of vulnerability A, B, C, D, E and F, the degrees of damages of 0 (no damage) to 5 (total collapse) and the degrees of intensity (VI to X) of the EMS-98 scale [Chávez, 1998]. As a result of the evaluation of the physical damage, the number of buildings of each municipality distributed according to the different damage degrees is obtained. The automatic report generated by TELEAVIS, using Level 0 method consists of a map of location with the planimetry at scale 1:250.000, maps with different parameters characterizing damage and a list of municipalities with the relation of damages. The scenario concerns all the municipalities of Catalonia (Spain), Département des Pyrénées Orientales (France) and two municipalities of Andorra. An example of the estimated number of homeless is shown on Figure 3 for a hypothetical earthquake of M5.5 occurring in the Cerdanya region. Figure 3: Location of a hypothetical M5.5 earthquake in Cerdanya region and number of homeless estimated in the study region: Catalonia, Département des Pyrénées Orientales and 2 municipalities of Andorra # 1.3.2. Level 1 Cross-Border automatic scenario The Level 1 damage assessment is being applied to a pilot zone within the study region that includes both the French and Spanish Cerdanya, and two municipalities of Andorra, but later the methodology will be extended to a wider region. This methodology is based on the vulnerability index method [Giovinazzi and Lagomarsino, 2004] in which the building stock is classified according to structural typologies characterized by a vulnerability index. These vulnerability indexes allow calculating the possible damages due to a certain earthquake by means of a vulnerability function as can be seen in Figure 4. The vulnerability function recommended within the RISK-UE for dwelling buildings is shown in Equation 4.1. The structural typologies defined within the RISK-UE project [Mouroux and Lebrun, 2006] were used to construct building typology matrix for the pilot zone of French and Spanish Cerdanya [Roussillon et al., 2006; Irizarry et al., 2007]. $$\mu_d = 2.5 \left[1 + \tanh \left(\frac{I + 6.25V_t - 13.1}{3.0} \right) \right]$$ (4.1) Figure 4: Mean vulnerability curves for the principal typologies in the pilot region Soil effects are considered in order to modify the mean intensity in each municipality and obtain the intensity with soils effects that affect each of the population polygons. A new methodology has been developed in the ISARD project (Macau et al. 2007). An example of the estimated number of homeless is shown on Figure 5a for a hypothetical earthquake of M5.5 occurring in the Cerdanya region. Figure5: a) Number of homeless estimated for the ISARD pilot zone of Cerdanya and 2 municipalities of Andorra due to an hypothetical M5.5 earthquake in Cerdanya region; b) Horizontal Peak Ground Acceleration Map obtained automatically from ISARD stations records during the French Central Pyrennes earthquake of 17/11/2006 with M5.1 ### 1.4. Ground motion maps Horizontal peak ground acceleration and horizontal peak ground velocity are computed automatically using Earthworm routines. An example of this representation is shown in figure 5b, related to an earthquake of M5.1, occurred in the Central French Pyrenees on November 17, 2006. These maps are also sent by TELEAVIS to the responsible of managing the seismic crisis. #### 2. Conclusion A Regional Automatic Seismic Damage Information system (ISARD project) has been developed on the Eastern Pyrenees (some Provinces in Spain, a French Department and Andorra), with a real time system based on a VSAT seismic network is now operational in the IGC (Spain) and BRGM (France) data centers. A Detection Automatic System (DAS) has been developed from Automatic Earthworm (EW) modules to give solutions to the main ISARD requirements and VSAT network conditions. An application (TELEAVIS) has been designed for the automatic generation of reports from the hypocentre data of the earthquakes detected by DAS and for its transmission by fax, SMS, ftp and electronic mail. From the data received from DAS, TELEAVIS currently develops an epicentral location map with planimetry of 1:250000, in addition to maps and tables with Level 0 damage scenarios for municipalities of Catalonia, French Département des Pyrénées Orientales and Andorra. More precise scenarios have been developed using the Level 1, RISK-UE methodology for municipalities of French and Spanish Cerdanya and Andorra. The automatic generation of a map with the PGA and PGV values recorded by VSAT stations is also operational. This system will contribute to the improvement of crisis management for Civil Defences responsibles facilitating a rapid homogeneous information of damages occurred at both French-Spanish cross border sides ### Acknowledgements The development and implementation of the system described in this paper has been partially funded by the ISARD project though the UE (FEDER) INTERREG IIIa (France-Spain) program (2000-2006). ### References - Allen, R.V., (1978), Automatic Earthquake Recognition and Timing From Single Traces, *Bull. Seism. Soc. Am.* 68, 1521-1532. - ATC-13 (1985), Earthquake damage evaluation data for California, Applied Technology Council (ATC). Redwood City, California. - Chávez, J. (1998), Evaluación de la vulnerabilidad y el riesgo sísmico a escala regional: Aplicación a Cataluña. *PhD Thesis. Universidad Politécnica de Cataluña, Barcelona*, 343 p. - Coburn, A. and Spence R. (1992), Earthquake Protection. John Wiley and Sons, 355 pp. - Giovinazzi, S. and Lagomarsino, S. (2004), A macroseismic method for vulnerability assessment of buildings, *Proceedings of the 13th World Conference on Earthquake Engineering*. Vancouver, B.C., Canada, August 1-6, 2004. Paper ID 896 - Goula, X., Jara, J.A., Susagna, T. and Roca, A., (2001), A new Broad-Band Seismic Network with satellite Transmission in Catalonia (Spain). In: Observatories and Research Facilities for European Seismology, *ORFEUS Newsletter*, vol.3, n°1. - Grünthal, G. (editor) (1998), European Macroseismic Scale 1998. *Cahiers du Centre Européen de Géodynamique et de Séismologie*, 7, Luxembourg, 99pp. - Irizarry, J., Roussillon, P. González, M., Colas, B. Sedan, O. and Susagna, T. (2007) Escenarios transfronterizos de riesgo sísmico en el Pirineo Oriental. *3er Congreso Nacional de Ingenieria Sísmica*, Girona(Spain) - Klein, F. W., (2002), User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes, *Open File Report 02-171, U. S. Geological Survey*, - Macau, A., Figueras, S., Susagna, T., Colas, B., Le Brun, B., Bitri, A., Cirés, J., González, M., y Roullé, A., (2007), "Microzonación sísmica en el Pirineo Oriental en términos de aceleración y intensidad macrosísmica", *3er Congreso Nacional de Ingenieria Sísmica, Girona* - Mouroux, P. and Lebrun, B. (2006), RISK-UE project: an advanced approach to earthquake risk scenarios with application to different european towns., In: C. S. Oliveira, A. Roca and X. Goula, (Editors), Assessing and Managing Earthquake Risk, Springer, 479 508. - Roca, A., Goula, X., Susagna, T., Chávez, J., González, M. and Reinoso, E. (2006), A simplified method for vulnerability assessment of dwelling buildings and estimation of damage scenarios in Catalonia. *Bulletin of Earthquake Engineering*, 4, 141-158 - Romeu, N, Jara, J.A., Goula, X., Susagna, T., Figueras, S., Olivera, C. and Roca, A. (2006), Seismic Information Automatic Sytem. *5^a Asamblea Hispano-Portuguesa de Geodesia y Geofisica*, Sevilla, - Roussillon, P., Irizarry, J., González, M., Delmotte, P., Sedan, O. and Susagna, T. (2006), Crossborder Seismic Risk Scenarios (Eastern Pyrenees). First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland. - Strasser, F. O., Bommer, J. J., Sesetyan, K., Cagnan, Z., Erdik, M., Irizarry, J., Goula, X., Lucantoni, A., Sabetta, F., Bal I. E., Crowley, H. and Lindholm C. (2008). A comparative study of European earthquake loss estimation tools for an earthquake scenario in Istanbul. Journal of Earthquake Engineering, In Press - Susagna, T., Goula, X., Roca, A., Pujades, L., Gasulla, N. and Palma, J.J. (2006), Loss scenarios for regional emergency plans: application to Catalonia, Spain. In: C. S. Oliveira, A. Roca and X. Goula, (Editors), Assessing and Managing Earthquake Risk, Springer, 463 478. - USGS (2005), Earthworm Documentation Release 6.2, in http://folkworm.ceri. memphis.edu/ew-doc/.